3.435 \(\int \frac{\sec ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=137 \[ \frac{2 b^4 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 d \left (a^2-b^2\right )}+\frac{\sec (c+d x) \left (a \left (2 a^2-5 b^2\right ) \sin (c+d x)+3 b^3\right )}{3 d \left (a^2-b^2\right )^2} \]

[Out]

(2*b^4*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/2)*d) - (Sec[c + d*x]^3*(b - a*Sin[c
+ d*x]))/(3*(a^2 - b^2)*d) + (Sec[c + d*x]*(3*b^3 + a*(2*a^2 - 5*b^2)*Sin[c + d*x]))/(3*(a^2 - b^2)^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.250985, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2696, 2866, 12, 2660, 618, 204} \[ \frac{2 b^4 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 d \left (a^2-b^2\right )}+\frac{\sec (c+d x) \left (a \left (2 a^2-5 b^2\right ) \sin (c+d x)+3 b^3\right )}{3 d \left (a^2-b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

(2*b^4*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/2)*d) - (Sec[c + d*x]^3*(b - a*Sin[c
+ d*x]))/(3*(a^2 - b^2)*d) + (Sec[c + d*x]*(3*b^3 + a*(2*a^2 - 5*b^2)*Sin[c + d*x]))/(3*(a^2 - b^2)^2*d)

Rule 2696

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[((g*Co
s[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b - a*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/
(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*(a^2*(p + 2) - b^2*(m + p + 2)
+ a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] &&
IntegersQ[2*m, 2*p]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{a+b \sin (c+d x)} \, dx &=-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}-\frac{\int \frac{\sec ^2(c+d x) \left (-2 a^2+3 b^2-2 a b \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}+\frac{\sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 \left (a^2-b^2\right )^2 d}+\frac{\int \frac{3 b^4}{a+b \sin (c+d x)} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}+\frac{\sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 \left (a^2-b^2\right )^2 d}+\frac{b^4 \int \frac{1}{a+b \sin (c+d x)} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}+\frac{\sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 \left (a^2-b^2\right )^2 d}+\frac{\left (2 b^4\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}+\frac{\sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 \left (a^2-b^2\right )^2 d}-\frac{\left (4 b^4\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac{2 b^4 \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}-\frac{\sec ^3(c+d x) (b-a \sin (c+d x))}{3 \left (a^2-b^2\right ) d}+\frac{\sec (c+d x) \left (3 b^3+a \left (2 a^2-5 b^2\right ) \sin (c+d x)\right )}{3 \left (a^2-b^2\right )^2 d}\\ \end{align*}

Mathematica [A]  time = 1.26235, size = 202, normalized size = 1.47 \[ \frac{\frac{24 b^4 \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\frac{\sec ^3(c+d x) \left (\frac{3}{2} b \left (a^2-7 b^2\right ) \cos (c+d x)+\frac{1}{2} a^2 b \cos (3 (c+d x))-4 a^2 b+6 a^3 \sin (c+d x)+2 a^3 \sin (3 (c+d x))-9 a b^2 \sin (c+d x)-5 a b^2 \sin (3 (c+d x))+6 b^3 \cos (2 (c+d x))-\frac{7}{2} b^3 \cos (3 (c+d x))+10 b^3\right )}{(a-b)^2 (a+b)^2}}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a + b*Sin[c + d*x]),x]

[Out]

((24*b^4*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(5/2) + (Sec[c + d*x]^3*(-4*a^2*b + 10*
b^3 + (3*b*(a^2 - 7*b^2)*Cos[c + d*x])/2 + 6*b^3*Cos[2*(c + d*x)] + (a^2*b*Cos[3*(c + d*x)])/2 - (7*b^3*Cos[3*
(c + d*x)])/2 + 6*a^3*Sin[c + d*x] - 9*a*b^2*Sin[c + d*x] + 2*a^3*Sin[3*(c + d*x)] - 5*a*b^2*Sin[3*(c + d*x)])
)/((a - b)^2*(a + b)^2))/(12*d)

________________________________________________________________________________________

Maple [B]  time = 0.059, size = 270, normalized size = 2. \begin{align*} -{\frac{2}{3\,d \left ( 2\,a+2\,b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-3}}-{\frac{1}{d \left ( 2\,a+2\,b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-2}}-{\frac{a}{d \left ( a+b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{3\,b}{2\,d \left ( a+b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{2}{3\,d \left ( 2\,a-2\,b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}+{\frac{1}{d \left ( 2\,a-2\,b \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-2}}-{\frac{a}{d \left ( a-b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+{\frac{3\,b}{2\,d \left ( a-b \right ) ^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}+2\,{\frac{{b}^{4}}{d \left ( a-b \right ) ^{2} \left ( a+b \right ) ^{2}\sqrt{{a}^{2}-{b}^{2}}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+b*sin(d*x+c)),x)

[Out]

-2/3/d/(tan(1/2*d*x+1/2*c)-1)^3/(2*a+2*b)-1/d/(2*a+2*b)/(tan(1/2*d*x+1/2*c)-1)^2-1/d/(a+b)^2/(tan(1/2*d*x+1/2*
c)-1)*a-3/2/d/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)*b-2/3/d/(tan(1/2*d*x+1/2*c)+1)^3/(2*a-2*b)+1/d/(2*a-2*b)/(tan(1/2
*d*x+1/2*c)+1)^2-1/d/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)*a+3/2/d/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)*b+2/d*b^4/(a-b)^2/(
a+b)^2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.80367, size = 1027, normalized size = 7.5 \begin{align*} \left [-\frac{3 \, \sqrt{-a^{2} + b^{2}} b^{4} \cos \left (d x + c\right )^{3} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) + 2 \, a^{4} b - 4 \, a^{2} b^{3} + 2 \, b^{5} - 6 \,{\left (a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{2} - 2 \,{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (2 \, a^{5} - 7 \, a^{3} b^{2} + 5 \, a b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{6 \,{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right )^{3}}, -\frac{3 \, \sqrt{a^{2} - b^{2}} b^{4} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{3} + a^{4} b - 2 \, a^{2} b^{3} + b^{5} - 3 \,{\left (a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{2} -{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (2 \, a^{5} - 7 \, a^{3} b^{2} + 5 \, a b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{3 \,{\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

[-1/6*(3*sqrt(-a^2 + b^2)*b^4*cos(d*x + c)^3*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^
2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c
) - a^2 - b^2)) + 2*a^4*b - 4*a^2*b^3 + 2*b^5 - 6*(a^2*b^3 - b^5)*cos(d*x + c)^2 - 2*(a^5 - 2*a^3*b^2 + a*b^4
+ (2*a^5 - 7*a^3*b^2 + 5*a*b^4)*cos(d*x + c)^2)*sin(d*x + c))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*d*cos(d*x +
 c)^3), -1/3*(3*sqrt(a^2 - b^2)*b^4*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))*cos(d*x + c)^
3 + a^4*b - 2*a^2*b^3 + b^5 - 3*(a^2*b^3 - b^5)*cos(d*x + c)^2 - (a^5 - 2*a^3*b^2 + a*b^4 + (2*a^5 - 7*a^3*b^2
 + 5*a*b^4)*cos(d*x + c)^2)*sin(d*x + c))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{a + b \sin{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+b*sin(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**4/(a + b*sin(c + d*x)), x)

________________________________________________________________________________________

Giac [B]  time = 1.13423, size = 369, normalized size = 2.69 \begin{align*} \frac{2 \,{\left (\frac{3 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )} b^{4}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} - b^{2}}} - \frac{3 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 6 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 6 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 2 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 8 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 6 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 3 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 6 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{2} b + 4 \, b^{3}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

2/3*(3*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))*b^4/((
a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) - (3*a^3*tan(1/2*d*x + 1/2*c)^5 - 6*a*b^2*tan(1/2*d*x + 1/2*c)^5 - 3*a
^2*b*tan(1/2*d*x + 1/2*c)^4 + 6*b^3*tan(1/2*d*x + 1/2*c)^4 - 2*a^3*tan(1/2*d*x + 1/2*c)^3 + 8*a*b^2*tan(1/2*d*
x + 1/2*c)^3 - 6*b^3*tan(1/2*d*x + 1/2*c)^2 + 3*a^3*tan(1/2*d*x + 1/2*c) - 6*a*b^2*tan(1/2*d*x + 1/2*c) - a^2*
b + 4*b^3)/((a^4 - 2*a^2*b^2 + b^4)*(tan(1/2*d*x + 1/2*c)^2 - 1)^3))/d